Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cancer Discov ; 12(4): 958-983, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-2108398

ABSTRACT

Vaccination against coronavirus disease 2019 (COVID-19) relies on the in-depth understanding of protective immune responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We characterized the polarity and specificity of memory T cells directed against SARS-CoV-2 viral lysates and peptides to determine correlates with spontaneous, virus-elicited, or vaccine-induced protection against COVID-19 in disease-free and cancer-bearing individuals. A disbalance between type 1 and 2 cytokine release was associated with high susceptibility to COVID-19. Individuals susceptible to infection exhibited a specific deficit in the T helper 1/T cytotoxic 1 (Th1/Tc1) peptide repertoire affecting the receptor binding domain of the spike protein (S1-RBD), a hotspot of viral mutations. Current vaccines triggered Th1/Tc1 responses in only a fraction of all subject categories, more effectively against the original sequence of S1-RBD than that from viral variants. We speculate that the next generation of vaccines should elicit Th1/Tc1 T-cell responses against the S1-RBD domain of emerging viral variants. SIGNIFICANCE: This study prospectively analyzed virus-specific T-cell correlates of protection against COVID-19 in healthy and cancer-bearing individuals. A disbalance between Th1/Th2 recall responses conferred susceptibility to COVID-19 in both populations, coinciding with selective defects in Th1 recognition of the receptor binding domain of spike. See related commentary by McGary and Vardhana, p. 892. This article is highlighted in the In This Issue feature, p. 873.


Subject(s)
Antiviral Restriction Factors , COVID-19 , Neoplasms , T-Lymphocytes , Antibodies, Neutralizing , Antiviral Restriction Factors/immunology , COVID-19/immunology , Humans , Neoplasms/complications , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes/immunology
2.
EBioMedicine ; 80: 104077, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1867076

ABSTRACT

BACKGROUND: Severe COVID-19 is associated with a high circulating level of calprotectin, the S100A8/S100A9 alarmin heterodimer. Baseline calprotectin amount measured in peripheral blood at diagnosis correlates with disease severity. The optimal use of this biomarker along COVID-19 course remains to be delineated. METHODS: We focused on patients with a WHO-defined moderate COVID-19 requiring hospitalization in a medical ward. We collected plasma and serum from three independent cohorts (N = 626 patients) and measured calprotectin amount at admission. We performed longitudinal measures of calprotectin in 457 of these patients (1461 samples) and used a joint latent class mixture model in which classes were defined by age, body mass index and comorbidities to identify calprotectin trajectories predicting the risk of transfer into an intensive care unit or death. FINDINGS: After adjustment for age, sex, body mass index and comorbidities, the predictive value of baseline calprotectin in patients with moderate COVID19 could be refined by serial monitoring of the biomarker. We discriminated three calprotectin trajectories associated with low, moderate, and high risk of poor outcome, and we designed an algorithm available as online software (https://calpla.gustaveroussy.fr:8443/) to monitor the probability of a poor outcome in individual patients with moderate COVID-19. INTERPRETATION: These results emphasize the clinical interest of serial monitoring of calprotectin amount in the peripheral blood to anticipate the risk of poor outcomes in patients with moderate COVID-19 hospitalized in a standard care unit. FUNDING: The study received support (research grants) from ThermoFisher immunodiagnostics (France) and Gustave Roussy Foundation.


Subject(s)
COVID-19 , Leukocyte L1 Antigen Complex , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , Humans , Leukocyte L1 Antigen Complex/blood , Severity of Illness Index
3.
Cell Death Differ ; 28(12): 3297-3315, 2021 12.
Article in English | MEDLINE | ID: covidwho-1298835

ABSTRACT

Patients with cancer are at higher risk of severe coronavirus infectious disease 2019 (COVID-19), but the mechanisms underlying virus-host interactions during cancer therapies remain elusive. When comparing nasopharyngeal swabs from cancer and noncancer patients for RT-qPCR cycle thresholds measuring acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in 1063 patients (58% with cancer), we found that malignant disease favors the magnitude and duration of viral RNA shedding concomitant with prolonged serum elevations of type 1 IFN that anticorrelated with anti-RBD IgG antibodies. Cancer patients with a prolonged SARS-CoV-2 RNA detection exhibited the typical immunopathology of severe COVID-19 at the early phase of infection including circulation of immature neutrophils, depletion of nonconventional monocytes, and a general lymphopenia that, however, was accompanied by a rise in plasmablasts, activated follicular T-helper cells, and non-naive Granzyme B+FasL+, EomeshighTCF-1high, PD-1+CD8+ Tc1 cells. Virus-induced lymphopenia worsened cancer-associated lymphocyte loss, and low lymphocyte counts correlated with chronic SARS-CoV-2 RNA shedding, COVID-19 severity, and a higher risk of cancer-related death in the first and second surge of the pandemic. Lymphocyte loss correlated with significant changes in metabolites from the polyamine and biliary salt pathways as well as increased blood DNA from Enterobacteriaceae and Micrococcaceae gut family members in long-term viral carriers. We surmise that cancer therapies may exacerbate the paradoxical association between lymphopenia and COVID-19-related immunopathology, and that the prevention of COVID-19-induced lymphocyte loss may reduce cancer-associated death.


Subject(s)
COVID-19/complications , COVID-19/virology , Lymphopenia/complications , Neoplasms/complications , RNA, Viral/analysis , SARS-CoV-2/genetics , Virus Shedding , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , DNA, Bacterial/blood , Enterobacteriaceae/genetics , Female , Humans , Interferon Type I/blood , Lymphopenia/virology , Male , Micrococcaceae/genetics , Middle Aged , Nasopharynx/virology , Neoplasms/diagnosis , Neoplasms/mortality , Pandemics , Prognosis , Time Factors , Young Adult
4.
Cell ; 182(6): 1401-1418.e18, 2020 09 17.
Article in English | MEDLINE | ID: covidwho-694669

ABSTRACT

Blood myeloid cells are known to be dysregulated in coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2. It is unknown whether the innate myeloid response differs with disease severity and whether markers of innate immunity discriminate high-risk patients. Thus, we performed high-dimensional flow cytometry and single-cell RNA sequencing of COVID-19 patient peripheral blood cells and detected disappearance of non-classical CD14LowCD16High monocytes, accumulation of HLA-DRLow classical monocytes (Human Leukocyte Antigen - DR isotype), and release of massive amounts of calprotectin (S100A8/S100A9) in severe cases. Immature CD10LowCD101-CXCR4+/- neutrophils with an immunosuppressive profile accumulated in the blood and lungs, suggesting emergency myelopoiesis. Finally, we show that calprotectin plasma level and a routine flow cytometry assay detecting decreased frequencies of non-classical monocytes could discriminate patients who develop a severe form of COVID-19, suggesting a predictive value that deserves prospective evaluation.


Subject(s)
Coronavirus Infections , Coronavirus , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Flow Cytometry , Humans , Leukocyte L1 Antigen Complex , Monocytes , Myeloid Cells , Prospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL